Straight Line Fitting and Predictions: On a Marginal Likelihood Approach to Linear Regression and Errors-In-Variables Models
نویسندگان
چکیده
منابع مشابه
New Approach in Fitting Linear Regression Models with the Aim of Improving Accuracy and Power
The main contribution of this work lies in challenging the common practice of inferential statistics in the realm of simple linear regression for attaining a higher degree of accuracy when multiple observations are available, at least, at one level of the regressor variable. We derive sufficient conditions under which one can improve the accuracy of the interval estimations at quite affordable ...
متن کاملa frame semantic approach to the study of translating cultural scripts in salingers franny and zooey
the frame semantic theory is a nascent approach in the area of translation studies which goes beyond the linguistic barriers and helps us to incorporate cognitive and cultural factors to the study of translation. based on rojos analytical model (2002b), which centered in the frames or knowledge structures activated in the text, the present research explores the various translation problems that...
15 صفحه اولiranian english learners’ perception and personality: a dual approach to investigating influential factors on willingness to communicate
abstract previous studies on willingness to communicate (wtc) have shown the influence of many individual or situational factors on students’ tendency to engage in classroom communication, in which wtc has been viewed either at the trait-level or situational level. however, due to the complexity of the notion of willingness to communicate, the present study suggests that these two strands are ...
Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملComposite quantile regression for linear errors-in-variables models
Composite quantile regression can be more efficient and sometimes arbitrarily more efficient than least squares for non-normal random errors, and almost as efficient for normal random errors. Therefore, we extend composite quantile regression method to linear errors-in-variables models, and prove the asymptotic normality of the proposed estimators. Simulation results and a real dataset are also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Climate
سال: 2014
ISSN: 0894-8755,1520-0442
DOI: 10.1175/jcli-d-13-00299.1